The χ-Hessian Quotient for Riemannian Metrics
نویسندگان
چکیده
Pseudo-Riemannian geometry and Hilbert–Schmidt norms are two important fields of research in applied mathematics. One the main goals this paper will be to find a link between these fields. In respect, present paper, we introduce analyze quantities pseudo-Riemannian geometry, namely H-distorsion and, respectively, Hessian χ-quotient. This second quantity investigated using Frobenius (Hilbert–Schmidt) norm. Some examples also given, which prove validity developed theory along paper.
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملOn Hessian Riemannian Structures
In Proposition 4.1 a characterization is given of Hessian Rieman-nian structures in terms of a natural connection in the general linear group GL(n; R) + , which is viewed as a principal SO(n)-bundle over the space of positive deenite symmetric n n-matrices. For n = 2, Proposition 5.3 contains an interpretation of the curvature of a Hessian Riemannian structure at a given point, in terms of an u...
متن کاملSobolev Metrics on the Riemannian Manifold of All Riemannian Metrics
On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...
متن کاملAn Extrinsic Look at the Riemannian Hessian
Let f be a real-valued function on a Riemannian submanifold of a Euclidean space, and let f̄ be a local extension of f . We show that the Riemannian Hessian of f can be conveniently obtained from the Euclidean gradient and Hessian of f̄ by means of two manifoldspecific objects: the orthogonal projector onto the tangent space and the Weingarten map. Expressions for the Weingarten map are provided ...
متن کاملThe Dirichlet problem for Hessian equations on Riemannian manifolds
on a Riemannian manifold (M n , g), where f is a symmetric function of λ ∈ R , κ is a constant, ∇2u denotes the Hessian of a function u on M and, for a (0, 2) tensor h on M , λ(h) = (λ1, · · · , λn ) denotes the eigenvalues of h with respect to the metric g. The Dirichlet problem for equations of type (1.1) in R , with κ = 0, under various hypothesis, is studied by Caffarelli, Nirenberg and Spr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2021
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms10020069